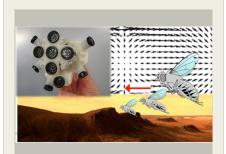
Autonomous Navigation in GNSS-Denied Environments, Phase I


Completed Technology Project (2013 - 2014)

Project Introduction

Aurora proposes to develop a vision-based subsystem for incorporation onto Mars vehicles in the air (VTOL) and on the ground. NOAMAD will be an embedded hardware device with associated firmware for payloadlimited UAVs, performing autonomous navigation, obstacle avoidance, guidance using bioinspired methods, and communication of information between agents within the autonomous team. NOAMAD will transition University of Maryland methods for insect-inspired, lightweight, vision- and optical sensor-based navigation methods into a subsystem that enables expansion of the exploratory capability of the vehicles on which it is installed. The subsystem will provide (1) localization (without a global navigation system or compass) using optic-flow based odometry combined with landmark detection, (2) obstacle detection and avoidance using optic flow, and (3) autonomous guidance using position information together with bio-inspired behaviors. Taken together, these functions will allow air and ground vehicles to work together to achieve progressively refined maps of an exploration region.

Primary U.S. Work Locations and Key Partners

Autonomous Navigation in GNSS-Denied Environments Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Images	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Target Destinations	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Autonomous Navigation in GNSS-Denied Environments, Phase I

Completed Technology Project (2013 - 2014)

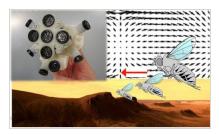
Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
University of Maryland- College Park(UMCP)	Supporting Organization	Academia	College Park, Maryland

Primary U.S. Work Locations		
Maryland	Massachusetts	
Virginia		

Project Transitions

O

May 2013: Project Start



May 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140486)

Images

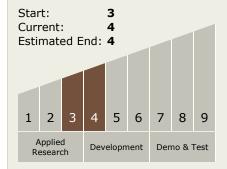
Project Image

Autonomous Navigation in GNSS-Denied Environments Project Image (https://techport.nasa.gov/imag e/136272)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Terrence Mckenna

Technology Maturity (TRL)

Technology Areas

Primary:

- TX04 Robotic Systems
 TX04.1 Sensing and Perception
 TX04.1.2 State Estimation
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

